Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency

نویسندگان

  • Hongwei Chen
  • Irène Aksoy
  • Fabrice Gonnot
  • Pierre Osteil
  • Maxime Aubry
  • Claire Hamela
  • Cloé Rognard
  • Arnaud Hochard
  • Sophie Voisin
  • Emeline Fontaine
  • Magali Mure
  • Marielle Afanassieff
  • Elouan Cleroux
  • Sylvain Guibert
  • Jiaxuan Chen
  • Céline Vallot
  • Hervé Acloque
  • Clémence Genthon
  • Cécile Donnadieu
  • John De Vos
  • Damien Sanlaville
  • Jean-François Guérin
  • Michael Weber
  • Lawrence W Stanton
  • Claire Rougeulle
  • Bertrand Pain
  • Pierre-Yves Bourillot
  • Pierre Savatier
چکیده

Leukemia inhibitory factor (LIF)/STAT3 signalling is a hallmark of naive pluripotency in rodent pluripotent stem cells (PSCs), whereas fibroblast growth factor (FGF)-2 and activin/nodal signalling is required to sustain self-renewal of human PSCs in a condition referred to as the primed state. It is unknown why LIF/STAT3 signalling alone fails to sustain pluripotency in human PSCs. Here we show that the forced expression of the hormone-dependent STAT3-ER (ER, ligand-binding domain of the human oestrogen receptor) in combination with 2i/LIF and tamoxifen allows human PSCs to escape from the primed state and enter a state characterized by the activation of STAT3 target genes and long-term self-renewal in FGF2- and feeder-free conditions. These cells acquire growth properties, a gene expression profile and an epigenetic landscape closer to those described in mouse naive PSCs. Together, these results show that temporarily increasing STAT3 activity is sufficient to reprogramme human PSCs to naive-like pluripotent cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

Evaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells

Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

NANOG Amplifies STAT3 Activation and They Synergistically Induce the Naive Pluripotent Program

Reprogramming of a differentiated cell back to a naive pluripotent identity is thought to occur by several independent mechanisms. Two such mechanisms include NANOG and activated STAT3 (pSTAT3), known master regulators of naive pluripotency acquisition [1-5]. Here, we investigated the relationship between NANOG and pSTAT3 during the establishment and maintenance of naive pluripotency. Surprisin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015